lunes, 23 de enero de 2012

Principio de exclusión de Pauli

El principio de exclusión de Pauli fue un principio cuántico enunciado por Wolfgang Ernst Pauli en 1925. Establece que no puede haber dos fermiones con todos sus números cuánticos idénticos (esto es, en el mismo estado cuántico de partícula individual) en el mismo sistema cuántico ligado.1 Perdió la categoría de principio, pues deriva de supuestos más generales: de hecho, es una consecuencia del teorema de la estadística del spin.1
El principio de exclusión de Pauli sólo se aplica a fermiones, esto es, partículas que forman estados cuánticos antisimétricos y que tienen espín semientero. Son fermiones, por ejemplo, los electrones y los quarks (estos últimos son los que forman los protones y los neutrones). El principio de exclusión de Pauli rige, así pues, muchas de las características distintivas de la materia. En cambio, partículas como el fotón y el (hipotético) gravitón no obedecen a este principio, ya que son bosones, esto es, forman estados cuánticos simétricos y tienen espín entero. Como consecuencia, una multitud de fotones puede estar en un mismo estado cuántico de partícula, como en los láseres.
Es sencillo derivar el principio de Pauli, basándonos en el artículo de partículas idénticas. Los fermiones de la misma especie forman sistemas con estados totalmente antisimétricos, lo que para el caso de dos partículas significa que:

(La permutación de una partícula por otra invierte el signo de la función que describe al sistema). Si las dos partículas ocupan el mismo estado cuántico , el estado del sistema completo es . Entonces,

así que el estado no puede darse. Esto se puede generalizar al caso de más de dos partículas.

jueves, 12 de enero de 2012

Vida de Scrhödinger

Erwin Rudolf Josef Alexander Schrödinger (Erdberg, Viena, Imperio austrohúngaro, 12 de agosto de 1887 – id., 4 de enero de 1961) fue un físico austríaco, nacionalizado irlandés, que realizó importantes contribuciones en los campos de la mecánica cuántica y la termodinámica. Recibió el Premio Nobel de Física en 1933 por haber desarrollado la ecuación de Schrödinger. Tras mantener una larga correspondencia con Albert Einstein propuso el experimento mental del gato de Schrödinger que mostraba las paradojas e interrogantes a los que abocaba la física cuántica.

En 1944 publicó en inglés un pequeño volumen titulado ¿Qué es la vida? (What is life?), resultado de unas conferencias divulgativas. Esta obra menor ha tenido gran influencia sobre el desarrollo posterior de la Biología. Aportó dos ideas fundamentales:
Primero, que la vida no es ajena ni se opone a las leyes de la termodinámica, sino que los sistemas biológicos conservan o amplían su complejidad exportando la entropía que producen sus procesos .
Segundo, que la química de la herencia biológica, en un momento en que no estaba clara su dependencia de ácidos nucleicos o proteínas, debe basarse en un “cristal aperiódico”, contrastando la periodicidad exigida a un cristal, con la necesidad de una secuencia informativa. Según las memorias de James Watson, DNA, The Secret of Life, el libro de Schrödinger de 1944, What's Life? le inspiró a investigar los genes, lo que le llevó al descubrimiento de la estructura de doble hélice del ADN.